News

HS-LS4-5 Evidence Statement

Life Science: Biological Evolution: Unity and Diversity – Evidence Statement 5 HS-LS4-5: Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species. [Clarification Statement: Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, fishing,…

HS-LS4-4 Evidence Statement

Life Science: Biological Evolution: Unity and Diversity – Evidence Statement 4 HS-LS4-4: Construct an explanation based on evidence for how natural selection leads to adaptation of populations. [Clarification Statement: Emphasis is on using data to provide evidence for how specific biotic and abiotic differences in ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light, geographic barriers, or evolution of other organisms) contribute to a change in gene…

HS-LS4-3 Evidence Statement

Life Science: Biological Evolution: Unity and Diversity – Evidence Statement 3 HS-LS4-3: Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. [Clarification Statement: Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations.] [Assessment Boundary: Assessment is limited to basic statistical and graphical analysis….

HS-LS4-2 Evidence Statement

Life Science: Biological Evolution: Unity and Diversity – Evidence Statement 2 HS-LS4-2: Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able…

HS-PS1-2 Evidence Statement

Physical Science: Matter and Its Interactions – Evidence Statement 2 HS-PS1-2: Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. [Clarification Statement: Examples of chemical reactions could include the reaction of sodium and chlorine, of carbon and oxygen, or of carbon and hydrogen.] [Assessment Boundary:…

HS-PS1-1 Evidence Statement

Physical Science: Matter and Its Interactions – Evidence Statement 1 HS-PS1-1: Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. [Clarification Statement: Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen.] [Assessment Boundary: Assessment is limited to…

HS-ETS1.C Optimizing the Design Solution

Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2) source: http://www.nextgenscience.org/

HS-ETS1.B Developing Possible Solutions

When evaluating solutions it is important to take into account a range of constraints including cost, safety, reliability and aesthetics and to consider social, cultural and environmental impacts. (HS-ETS1-3) Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see…

HS-ESS3.D Global Climate Change

Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts. (HS-ESS3-5) Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities. (HS-ESS3-6) source: http://www.nextgenscience.org/

HS-ESS3.C Human Impacts on Earth Systems

The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources. (HS-ESS3-3) Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation. (HS-ESS3-4) source: http://www.nextgenscience.org/