News

HS-PS3.B Conservation of Energy and Energy Transfer

Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. (HS-PS3-1) Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. (HS-PS3-1),(HS-PS3-4) Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles,…

HS-PS3.A Definitions of Energy

Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS- PS3-1),(HS-PS3-2) At the macroscopic scale, energy manifests…

HS-PS2.B Types of Interactions

Newton’s law of universal gravitation and Coulomb’s law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. (HS-PS2-4) Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-4),(HS-PS2-5) Attraction and repulsion between electric charges…

HS-PS2.A Forces and Motion

Newton’s second law accurately predicts changes in the motion of macroscopic objects. (HS-PS2-1) Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. (HS-PS2-2) If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. (HS-PS2-2), (HS-PS2-3).   source: http://www.nextgenscience.org/

HS-PS1.C Nuclear Processes

Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve release or absorption of energy. The total number of neutrons plus protons does not change in any nuclear process. (HS- PS1-8) Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-5), (secondary to HS-ESS1-6) source: http://www.nextgenscience.org/

HS-PS1.B Chemical Reactions

Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy. (HS-PS1-4),(HS-PS1-5) In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction…

HS-PS1.A Structure and Properties of Matter

Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons. (HS-PS1-1) The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. (HS-PS1-1),(HS-PS1-2) The structure and interactions of matter at the bulk scale are determined…

Want to run your own science experiments?

Registration opens February 2, 2016 for next year’s Systems Biology and Genetic Research course at WaNIC!   Have you ever wanted to work in a research lab and run your own science experiments? This course will provide a yearlong exploratory journey into the field of STEM medical research. WaNIC will join Institute for Systems Biology, Center for Infectious Disease Research, NW Association for Biomedical Research, and Fred Hutchinson Cancer Research…

Project Feed 1010 Partners with Northeastern University to Advance Sustainable Agriculture

ISB’s Project Feed 1010 is building a global, crowd-sourced network of educators, students, researchers and farmers to optimize and scale-up sustainable agriculture practices and educate the future scientific workforce. To support this global network, we have partnered with Northeastern University to develop database, web and mobile infrastructures with functionalities for data tracking, monitoring, analytics and predictive modeling. For the next 10 weeks, more than 20 graduate-level computer science students will…