Ocean Acidification: A Systems Approach to a Global Problem

Prerequisite
Understanding of networks. No experience with networks? Cell phone activity from Eco. Networks

Students learn to use CYTOSCAPE to visualize networks

This program/tool can be used to help students graphically depict any networks investigated or used in this or other curriculum

Lesson 3
Video: leads to discussion about stakeholders and possible systems lab investigations

Lesson 4
Planning a Cohesive Set of experiments

Students read and prepare: "Ocean Acidification Intro"

Students read and prepare: "Why Study Diatoms"

Possible Lab: Understanding Nutrient Cycles and Algal Blooms

Possible Lab: Students design an experiment to observe the effects of CO2 on diatom growth.

Students learn to use a hemacytometer to count cells

Possible Lab: Students design an experiment to observe the effects of CO2 on shell dissolution.

Lesson 5a
Experimentation and Data Analysis

Lesson 5b
All lab groups explore some online data or supplemental evidence

Lesson 6 - SUMMARY
ACTIVITY: Mock summit where student groups represent key stakeholders.

Lesson 1
Case study through critical reading introduces students to the problem

Lesson 2 - Lab
Students explore sources and detection of CO2

Class concept map: factors and interconnections produce large map

PART 2
Students learn details about OCEAN ACIDIFICATION

Students analyze
real-time data from their

Possible Lab: Ocean Acidity and Temperature and/or Salinity Changes

Possible Lab: Mesocosms

Other online real time data such as Eyes Over Puget Sound and other reports

In situ sensors, such as Mauna Loa