News

HS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Disciplinary Core Topics

LS2.A: Interdependent Relationships in Ecosystems

LS2.B: Cycles of Matter and Energy Transfer in Ecosystems

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

LS2.D: Social Interactions and Group Behavior

Students who demonstrate understanding can:

HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. [Clarification Statement: Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate, and competition. Examples of mathematical comparisons could include graphs, charts, histograms, and population changes gathered from simulations or historical data sets.] [Assessment Boundary: Assessment does not include deriving mathematical equations to make comparisons.]

HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. [Clarification Statement: Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.] [Assessment Boundary: Assessment is limited to provided data.]

HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions. [Clarification Statement: Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments.] [Assessment Boundary: Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration.]

HS-LS2-4. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. [Clarification Statement: Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]

HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.]

HS-LS2-6. Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. [Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption or sea level rise.]

HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.* [Clarification Statement: Examples of human activities can include urbanization, building dams, and dissemination of invasive species.]

HS-LS2-8. Evaluate the evidence for the role of group behavior on individual and species’ chances to survive and reproduce. [Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.]

Source: http://www.nextgenscience.org

Recent Articles

  • Observing Beyond our Senses – Overview

    In this module, students focus on the role of physics and engineering in the increasingly interdisciplinary field of systems biology. Centered on a case study requiring instrumentation for field research, the driving question is “How do scientists measure what they cannot directly observe with their senses?”

  • Interested in participating in immunotherapy research?

    Interested in participating in immunotherapy research? Join the melanoma program at UCLA to learn about how we characterize tumor microenvironments in order to advance sequential therapy to combat cancer. You will participate in state-of-the-art immuno-oncology research and will contribute to learning modules so that others can better understand new therapies. This paid internship will provide you with many new wet bench and professional skills! Image from Wang, et al 2021,…

  • Are you interested in helping high schools usher in the future of health?

    Join our Team as an AmeriCorps Member! This 10.5 month position is easy to apply for and can be your first step in making a positive impact by working with high school students, teachers, and STEM professionals to usher in the future of health. Medicine is shifting from a reactive disease-care system to a proactive Systems Medicine discipline that holistically optimizes wellness and minimizes disease. ISB is preparing students for…

  • Science and Math Teachers – need a break from the classroom?

    Consider joining us for a paid summer position! These in-person, summer research and curriculum development positions are easy to apply for and can reinvigorate you for the years ahead. Position Overview Institute for Systems Biology (ISB) is currently hiring teachers to work full-time or part-time for 2 to 7 weeks during the summer of 2022 for anywhere between 80-280 total hours. Since 2004, the Baliga Lab has partnered teachers with…